terça-feira, 25 de outubro de 2011


curiosidades


Por que os cabelos ficam brancos com a idade?
   

De acordo com as atuais teorias do envelhecimento, cabelos brancos surgem quando as estruturas que compõem as células se oxidam devido à ação dos radicais livres - tipos reativos de oxigênio capazes de provocar danos celulares. Os radicais livres são moléculas instáveis, com número ímpar de elétrons (partículas atômicas de carga negativa), que podem desequilibrar as funções celulares. No organismo, milhares de radicais livres, provenientes sobre tudo do oxigênio (elemento vital para a transformação dos alimentos em energia) são formados e destruídos a cada minuto. A destruição é operada por antioxidantes naturais (as vitaminas C e E, e as enzimas superóxido dismutase e catalase). Assim, mais de 95% do oxigênio absorvido na respiração são transformados em água no interior das células, enquanto os 5% restantes passam por outras etapas antes disso e permanecem sob a forma de radicais livres. A poluição ambiental, os maus aumento na produção dos radicais livres, que facilitam o surgimento de doenças e o envelhecimento precoce.
     Até os 40/45 anos de idade, geralmente o organismo consegue vencer a luta contra os radicais livres, retirando-os da circulação sem grandes dificuldades. Depois, contudo, eles livres tendem a se acumular gradualmente no organismo, contribuindo para o surgimento não só de cabelos brancos como de doenças degenerativas (arteriosclerose e câncer), problemas nas articulações (reumatismo e artrose) e alterações na pele (rugas e manchas senis).
     Às vezes, os cabelos embranquecem precocemente, em geral quando, além de ter predisposição genética para isso, a pessoa enfrenta problemas particulares graves. Numa situação de estresse emocional, por exemplo, o organismo libera grande quantidade de adrenalina, substância altamente oxidante que contribui para o aumento dos radicais livres na corrente sangüínea - e daí, para o surgimento de cabelos brancos.
Parte superior do formulário

quinta-feira, 20 de outubro de 2011

Tabela Periódica:

tabela periódica é uma forma de organizar todos os elementos químicos conhecidos, levando em conta diversas de suas características.

 
Histórico
Em 1829, Döbereiner reuniu os elementos semelhantes em grupos de três.
Cada grupo recebeu o nome de tríade. A massa atômica de um elemento era aproximadamente a média aritmética das massas atômicas dos dois outros elementos.
Exemplo:
Li = 7u
Na = 23u
K = 39u
Em 1863, Chancourtois dispôs os elementos os elementos numa espiral traçada nas paredes de um cilindro, em ordem crescente de massas atômicas. Tal classificação recebeu o nome de parafuso telúrico.
Já, em 1864, Newlands dispôs os elementos em colunas verticais de sete elementos, em ordem crescente de massas atômicas, observando que de sete em set elementos havia repetição das propriedades, fato que recebeu o nome de Lei das Oitavas.
Finalmente, em 1869, Mendeleev apresentou uma classificação, que é a base da classificação periódica moderna, colocando os elementos em ordem crescente de suas massas atômicas, distribuídos em oito faixas horizontais (períodos) e doze colunas verticais (famílias). Verificou que as propriedades variavam periodicamente à medida que aumentava a massa atômica.
Na tabela periódica moderna, os elementos são colocados em ordem crescente de número atômico.
Construção da Tabela Periódica
Os elementos são colocados em faixas horizontais (períodos) e faixas verticais (grupos ou famílias).
Em um grupo, os elementos têm propriedades semelhantes e, em um período, as propriedades são diferentes.
Na tabela há sete períodos.
Os grupos são numerados de 0 a 8. Com exceção dos grupos 0 e 8, cada grupo está subdividido em dois subgrupos, A e B. O grupo 8 é chamado de 8B e é constituído por três faixas verticais.
Modernamente, cada coluna é chamada de grupo. Há, portanto, 18 grupos numerados de 1 a 18.
Posição dos Elementos na Tabela Periódica
- Elementos representativos ou típicos (o último elétron é colocado em subnível s ou p): grupos A. Estão nos extremos da tabela.
- elementos de transição (o último elétron é colocado em subnível d; apresentam subnível d incompleto): grupos 1B, 2B, 3B, 4B, 5B, 6B, 7B e 8B. Estão localizados no centro da tabela periódica.
- Elementos de transição interna (o último elétron é colocado em subnível f; apresentam subnível f incompleto). Estão divididos em duas classes:
 Lantanídeos (metais terras raras): grupo 3B e 6º período. Elementos de Z = 57 a 71.
 Actinídeos: grupo 3B e 7º período. Elementos de Z = 89 a 103.
- Gases nobres: grupo zero ou 8A ou 18.
Os grupos mais conhecidos são:
1A: metais alcalinos
2A:
 metais alcalinos-terrosos
6A: calcogênios
7A:
 halogênios
Relação entre configuração eletrônica e a posição do elemento na tabela
Período:
Um elemento com x camadas eletrônicas está no período x.
Exemplo: P (Z = 15) K = 2 ; L = 8 ; M = 5
P (fósforo) está no 3º período.
Grupo:
a) Elementos representativos (grupos A) e 1B e 2B. O número de elétrons na camada de valência é o número do grupo.
Exemplo: P (Z =15) K = 2 ; L = 8 ; M = 5
O fósforo está no grupo 5A.
b) Elementos de transição: a soma do número de elétrons dos subníveis s e d mais externos é o número do grupo. Exemplo: V (Z = 23)
1s2 2s2 2p6 3s2 3p6 4s2 3d3
Soma s + d = 2 + 3 = 5 grupo 5B.



Modelo atômico atual:

Distribuição eletrônica:

 

Camadas Eletrônicas ou Níveis de Energia

O número de camada é chamado
 número quântico principal (n).

Número máximo de elétrons em cada nível de energia:
1. Teórico:
Equação de Rydberg: x = 2n2

K
L
M
N
O
P
Q
2
8
18
32
50
72
98

2. Experimental:
O elemento de número atômico 112 apresenta o seguinte número de elétrons nas camadas energéticas:

K
L
M
N
O
P
Q
2
8
18
32
32
18
2

Camada de valência é a camada mais externa do átomo e pode contar no máximo 8 elétrons
Subcamadas ou subníveis de Energia
Uma camada de número n será subdividida em n subníveis:
s, p, d, f, g, h, i…
Nos átomos dos elementos conhecidos, os subníveis teóricos g, h, i… estão vazios.
Número máximo de elétrons em cada subnível experimental:
s     p     d     f
2     6     10     14
Distribuição dos elétrons nos subníveis (configuração eletrônica)
Os subníveis são preenchidos em ordem crescente de energia (ordem energética).
 Linus Pauling descobriu que a energia dos subníveis cresce na ordem:
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d…
É nessa ordem que os subníveis são preenchidos. Para obter essa ordem basta seguir as diagonais no Diagrama de Pauling abaixo:

    Seqüência de preenchimento de orbitais
Deve-se observar a ordem energética dos subníveis de energia, que infelizmente não é igual à ordem geométrica. Isso porque subníveis de níveis superiores podem ter menor energia total do que subníveis inferiores. A energia de um subnível é proporcional à soma (n + l) de seus respectivos números quânticos principal (n) e secundário (l).
O número quântico azimutal ou secundário, representado pela letra l, especifica a subcamada e, assim, a forma do orbital. Pode assumir os valores 0, 1, 2 e 3, correspondentes às subcamadas s, p, d, f.
Método analítico para ordenação dos subníveis:
Exemplos
1)
3d          4s
n = 3          n = 4
l = 2          l = 0
n + l = 5          n + l = 4
3d é mais energético que 4s
2)
3d          4p
n = 3          n = 4
l = 2          l = 1
n + l = 5          n + l = 5
Quando os subníveis apresentarem a mesma soma, o mais afastado ou de maior nível energético terá maior energia.
Ordem geométrica é a ordenação crescente de níveis energéticos.
Exemplo: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p…
Camada de Valência é o último nível de uma distribuição eletrônica, normalmente os elétrons pertencentes à camada de valência, são os que participam de alguma ligação química.
Exemplo: Arsênio (As): Z = 33
- Ordem energética (ordem de preenchimento): 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p3
- Ordem geométrica (ordem de camada): 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p3
Camadas Energéticas: K = 2; L = 8; M = 18; N = 5
A camada de valência do As é a camada N, pois é o último nível que contém elétrons.
  Distribuição Eletrônica em Ìons
Átomo: nº de prótons = nº de elétrons
Íon: nº de prótons (p) ≠ nº de elétrons
Íon positivo (cátion): nº de p > nº de elétrons
Íon negativo (ânion): nº de p < nº de elétrons
  Distribuição Eletrônica em Cátion
Retirar os elétrons mais externos do átomo correspondente. Exemplo:
Ferro (Fe) Z = 26 1s2 2s2 2p6 3s2 3p6 4s2 3d6 (estado fundamental = neutro)
Fe2+  1s2 2s2 2p6 3s2 3p6 3d6 (estado iônico)
  Distribuição Eletrônica em Ânion
Colocar os elétrons no subnível incompleto. Exemplo:
Oxigênio (O) Z = 8 1s2 2s2 2p4 (estado fundamental = neutro)
O2-  1s2 2s2 2p6






Números Quânticos:

 

O endereço de uma pessoa que recebe cartas, normalmente, está caracterizado pelos correios por quatro “números”: Estado, cidade, rua e número da casa.

Do mesmo modo, cada um dos elétrons de um átomo distingue-se dos demais mediante quatro números, os chamados números quânticos. Nota-se que elétrons isolados em repouso são exatamente iguais, não se podendo distinguir uns dos outros.

1- Número quântico principal (n)

Representa aproximadamente a distância do elétron ao núcleo. O número n  tem valores inteiros 1, 2, 3,∞, sendo primariamente responsável  pela determinação da energia do elétron, do tamanho do orbital ocupado pelo elétron e da distância do orbital ao núcleo. A distância média do orbital 7s ao núcleo é maior que a distância média do orbital 1s ao núcleo.





2- Número quântico secundário (azimutal) “l”
Representa a forma do orbital. Assim, os orbitais s são esféricos, os orbitais p têm a forma de halteres ou de um oito, etc. Valores de l: 0 (s), 1 (p), 2 (d), 3 (f),…(n-1).
Para átomos com muitos elétrons, a energia de um elétron é determinada não só pelo valor de n, mas também pelo valor de l. Assim, para um dado valor de n, elétrons p têm energia ligeiramente maior que elétrons s.
3- Número quântico magnético (m)
Descreve a orientação do orbital no espaço. O número m pode ter qualquer valor inteiro entre +l e –l, inclusive zero.
Exemplo:
4- Número quântico spin “MS”
Descreve a rotação do elétron em torno do seu eixo. O número ms pode ter somente os valores +1/2 e -1/2.
Dois elétrons de um mesmo orbital apresentam os três primeiros números quânticos iguais, mas possuem spins opostos. Portanto, de acordo com Pauli, dois elétrons de um mesmo átomo nunca podem ter os mesmos quatro números quânticos.

segunda-feira, 10 de outubro de 2011


Descoberta :

  

Alguns filósofos da Grécia Antiga já admitiam que toda e qualquer matéria seria formadas por minúsculas partículas indivisíveis, que foram denominadas átomos (a palavra átomo, em grego, significa indivisível).
  No entanto, foi somente em 1803 que o cientista inglês John Dalton, com base em inúmeras experiências, conseguiu provar cientificamente a ideia de átomo. Surgiu então a teoria atómica clássica da matéria. Segundo essa teoria, quando olhamos por exemplo, para um grão de ferro, devemos imaginá-lo como sendo formado por um aglomerado de um número enorme de átomos de ferro.


  Com o passar dos anos, novas observações e experiências levaram os cientistas a pensar que a matéria poderia conter partículas carregadas electricamente. Citando algumas dessas descobertas: electrização (sabe-se hoje em dia que é negativa) da ebonite por fricção com lã, electrização (sabe-se hoje em dia que é negativa) do vidro por fricção com um pano de seda, passagem da corrente eléctrica por algumas soluções e outras não, descoberta da radioactividade (emissão de partículas alfa – positivas).
  Se a matéria é electricamente neutra, os seus átomos são obrigatoriamente neutros e a saída de partículas eléctricas só é possível se esses átomos sofrerem alguma divisão.
  Logo, o átomo é divisível, ou seja, deve ser formado por partículas ainda menores e com carga eléctrica.
Tentando explicar esses fenómenos, o cientista Thomson propôs, em 1904, um novo modelo de átomo, formado por uma "pasta" positiva "recheada" por electrões de carga negativa (por isso também chamado “pudim de passas”), o que garantia a carga eléctrica neutra do modelo atómico. Com isso, começava-se a admitir a divisibilidade do á tomo e a reconhecer a natureza eléctrica da matéria.
  Em 1911, o cientista Rutherford fez uma experiência muito importante, que veio alterar e melhorar profundamente a visão do modelo atómico. Resumidamente, a experiência consistiu no seguinte: um pedaço de metal que emitia partículas alfa (positivas) que atravessava um lâmina finíssima de ouro. Rutherford observou que a maioria das partículas alfa atravessa a lâmina de ouro como se fosse uma peneira; apenas algumas partículas desviavam ou até mesmo retrocediam.
  Rutherford viu-se obrigado a admitir que a lâmina de ouro não era constituída por átomos maciços e justapostos, comopensaram Dalton e Thomson. Pelo contrário, a lâmina seria formada por núcleos pequenos, densos e electricamente positivos, dispersos em grandes espaços vazios.
  Os grande espaços vazios explicam por que é que a grande maioria das partículas alfa não sofre desvios. Entretanto, lembrando que as partículas alfa são positivas, é fácil entender que, no caso de uma partícula alfa passar próximo de um núcleo (também positivo), ela será fortemente desviada; e no caso extremo de uma partícula alfa "bater" num núcleo, ela será repelida para trás.
  Surge, porém, uma pergunta: se o ouro apresenta núcleos positivos, como explicar o facto de a lâmina de ouro ser electricamente neutra?
  Rutherford imaginou então que ao redor do núcleo positivo estariam a girar partículas muito menores (que não atrapalham a passagem das partículas alfa), com carga eléctrica negativa (para contrabalançar a carga positiva do núcleo), e que foram denominadas electrões. Em resumo, o átomo seria semelhante ao Sistema Solar: o núcleo representaria o Sol e os electrões seriam os planetas, girando em órbitas circulares e formando a chamada electrosfera (modelo atómico chamado, por isso, de modelo planetário).

Modelos Atomicos :

- Modelo Atômico de Thomson (1898)
Com a descoberta dos prótons e elétrons, Thomson propôs um modelo de átomo no qual os elétrons e os prótons, estariam uniformemente distribuídos, garantindo o equilíbrio elétrico entre as cargas positiva dos prótons e negativa dos elétrons.

- Modelo Atômico de Rutherford (1911)

Rutherford bombardeou uma fina lâmina de ouro (0,0001 mm) com partículas "alfa" (núcleo de átomo de hélio: 2 prótons e 2 nêutrons), emitidas pelo "polônio" (Po), contido num bloco de chumbo (Pb), provido de uma abertura estreita, para dar passagem às partículas "alfa" por ele emitidas. 
Envolvendo a lâmina de ouro (Au), foi colocada uma tela protetora revestida de sulfeto de zinco (ZnS).

Assim, o átomo seria um imenso vazio, no qual o núcleo ocuparia uma pequena parte, enquanto que os elétrons o circundariam numa região negativa chamada de eletrosfera, modificando assim, o modelo atômico proposto por Thomson.

- Os Postulados  de Niels Bohr (1885-1962)

De acordo com o modelo atômico  proposto por Rutherford, os elétrons ao girarem  ao redor do núcleo, com o tempo perderiam energia, e se chocariam com o mesmo. 
Como o átomo é uma estrutura estável, Niels Bohr formulou uma teoria (1913) sobre o movimento dos elétrons, fundamentado na Teoria Quântica da Radiação (1900) de Max Planck.
A teoria de Bohr fundamenta-se nos seguintes postulados: 


1º postulado: Os elétrons descrevem órbitas circulares estacionárias ao redor do núcleo, sem emitirem nem absorverem energia




2º postulado: Fornecendo energia (elétrica, térmica, ....) a um átomo, um ou mais elétrons a absorvem e saltam para níveis mais afastados do núcleo. Ao voltarem as suas órbitas originais, devolvem a energia recebida em forma de luz (fenômeno observado, tomando como  exemplo, uma barra de ferro aquecida ao rubro). 

- Modelo Atômico de Sommerfeld (1916)
Ao pesquisar o átomo, Sommerfeld concluiu que os elétrons de um mesmo nível, ocupam órbitas de trajetórias diferentes (circulares e elípticas) a que denominou de subníveis, que podem ser de quatro tipos:  s , p , d , f .
- Teoria da Mecânica Ondulatória

Em 1926, Erwin Shröringer formulou uma teoria chamada de "Teoria da Mecânica Ondulatória" que determinou o conceito de "orbital" . 
Orbital é a região do espaço ao redor do núcleo onde existe a máxima probalidade de se encontrar o elétron. 
  
O orbital  s  possui forma esférica ...................



e os orbitais  p  possuem forma de halteres. ............ 


Componentes dos Átomos :




Prótons: carga positiva, fica dentro do núcleo.

Nêutrons: carga neutra, fica dentro do núcleo.

Elétrons: carga negativa, fica nos orbitais em volta do núcleo.


Íons :

Um íon é um átomo que possui déficit ou excesso de elétrons. Para o primeiro caso, adquire carga positiva (cátion). Para o segundo, carga negativa (ânion) – uma vez que a carga do elétron é convencionada negativa. Ou seja, o ganho ou perda de elétrons de um átomo elimina-o da neutralidade e lhe confere carga elétrica.
Apesar de carregados eletricamente, os íons podem apresentar maior estabilidade do que os átomos neutros: o íon fluoreto (F-), por exemplo, é derivado de um átomo de flúor que recebeu 1 elétron e adquiriu, assim, carga negativa. Mas, como a adição desse faz com que sua camada de valência possua 8 elétrons, de acordo com a regra do octeto, adquire estabilidade elétrica.
Ou seja, o fato desse íon possivelmente se ligar a um cátion não é visando estabilidade elétrica, pois a mesma já foi atingida, mas por atração eletrostática. Assim, numa possível separação, tanto o F- quanto o cátion continuariam estabilizados.

SEMELHANÇAS ATÔMICAS :

ISÓTOPOS: mesmo número de prótons.

ISÓBAROS: mesmo número de massa.

ISÓTONOS: mesmo número de nêutrons.